
1

Comparing MongoDB
and Couchbase for

Real-Time Analytics
A benchmarking report from Couchbase and an

independent benchmarking subcontractor

SEPTEMBER 2025

2

Executive Summary

Document databases were developed in response to a rise in the volume of data and
the frequency with which information is stored, accessed, and updated. The YCSB
benchmark is the de facto standard for measuring operational performance across
operational NoSQL database workloads. For analytic workloads, there is not yet a
de facto standard for testing NoSQL databases, so these tests utilized the CH2++
benchmark, a modern methodology for evaluating hybrid operational and analytical
processing. More on that below. This report presents a comparative performance
analysis of two leading document database platforms, Couchbase Capella, including
its Capella Analytics service, and MongoDB Atlas with Atlas SQL. While much
more detail is contained within the report, as a summary, Couchbase Capella
outperforms MongoDB Atlas in a range of ~100-150 times better for the analytic
workload latencies that both platforms completed.

Separately, Atlas analytic queries often timed out (~30-70% of tests) and failed
to return results. Where the Capella query might return results <10 seconds, Atlas
would not return results in the allocated 300-second (5-minute) timeout limit. Capella
had no timeout issues, and performed and returned results for 100% of queries.

Overall, both the analytic latency metrics and timeout factors were surprisingly poor
given MongoDB’s place in the NoSQL market as an operational database.

Challenges with Analyzing JSON Data

JavaScript Object Notation (JSON) is the data consumption format for operational
and AI applications, especially those that change frequently and cannot afford the
delays of systemically modifying a relational schema in order to introduce a simple
new data structure. For instance, applications that manage account profiles, which
are updated frequently, are commonly implemented with JSON.

JSON’s flexibility is its appeal. It does not require a predefined schema. JSON uses
a simple syntax and does not require data types, only quotations around text.
JSON documents can contain key/value pairs, simple arrays, arrays of objects, and
multidimensional tables. JSON can nest these features within a document, creating
multi-level nested documents. Developers can add new fields to a single document, a
collection of documents, or only new documents. All of this is easy and controlled by
the programmer or program. JSON is the data format for operational use cases.

Challenges arise when organizations seek to analyze operational JSON data due
to mismatched requirements. Business intelligence tools prefer their data to be
managed with structured schemas, yet JSON does not conform to that expectation.
Normalizing and flattening JSON can be a significant challenge for data engineers
responsible for setting up and managing data pipelines. Although many utilities help
address this problem, it is one that requires constant attention due to the changing
nature of the JSON being transformed.

In fact, while this document was originally intended to compare the analytic and
operational performance of two popular JSON document databases, it is also
useful as a reminder that analyzing JSON-formatted data is challenging, not only for
consumers, but also vendors. A NoETL approach, preserving the JSON structure while
enabling analytics queries, is what this benchmark aims to measure.

3

THE BENCHMARK

The primary goal of this study is to assess how well these two cloud-native database
platforms support primarily analytic workloads and secondarily operational
scenarios, where fast operational access must coexist with ad-hoc analytical insights,
while providing SQL-based query access. The benchmark covers a representative
workload that reflects the demands of modern applications that rely on document-
centric data models and expect low-latency operational queries as well as scalable
analytical processing. To ensure a fair and practical comparison, price-comparable
cluster configurations were benchmarked across both platforms.

The results aim to inform architects, engineers, and decision-makers about the
strengths and limitations of each system under realistic, mixed workload conditions,
with a focus on transparency, reproducibility, and practical relevance.

Comparison Methodology

To compare both vendors, the cloud Database-as-a-Service offering of each was
utilized, Couchbase Capella and MongoDB Atlas. Both offer support for SQL-based
JSON analytics without requiring operational data to be flattened prior to analysis.

•	 Capella offers Capella Operational for transaction-oriented workloads and Capella
Analytics for analytical workloads. Capella supports real-time movement of data
in the operational store with zeroETL to the analytics store. Changes made in the
source are automatically applied to analytics.

•	 Atlas uses standard clusters for operational workloads. In addition, they offer
customers analytical nodes that are intended to be used for analytical processing.
These analytic nodes are just secondary nodes deployed alongside the operational
cluster to provide performance-isolated data access.

Benchmark

This study applies the CH2++ benchmark, a modern benchmarking workload
designed to evaluate the performance of hybrid operational and analytical
processing (HTAP/HOAP) on document-oriented databases that natively store and
query JSON data. It builds upon earlier benchmarks such as TPC-C and TPC-H, as well
as the original CH-benCHmark, which was developed for relational HTAP systems.

Originally introduced as CH2 to extend the CH-benCHmark into the NoSQL domain,
the CH2++ benchmark represents a significant evolution. CH2++ features a fully
document-oriented schema, designed specifically to reflect a more real-world-like
usage of JSON databases. It introduces additional fields and schema refinements
that better utilize the columnar and analytical capabilities of modern document
databases. The benchmark includes both operational queries and updates (e.g.,
point lookups, inserts, updates) and analytical queries (e.g., aggregations, joins,
filtering over nested fields), enabling the comprehensive evaluation of how well a
system supports mixed workloads. All queries have been designed to operate on
nested JSON structures.

4

The intensity of both the transactional (TPC-C like) and analytical (TPC-H like) sides of
the benchmark can be scaled independently, while the data set size is the same for
both. As with many TPC benchmarks, the scaling of the CH2++ data set is dependent
on the number of “warehouses” the benchmark is using.

To measure analytic performance in different ways, CH2++ uses 22 analytics queries.

Like many other database benchmarks, CH2++ distinguishes a LOAD phase to
prepare the database and a RUN phase where the operational side continuously
modifies the content of the database. During the RUN phase, the analytical side
of the benchmark iterates over a fixed set of analytical queries. Depending on the
database, it may use a different endpoint than the operational part.

For more information on the benchmark techniques, see Appendix 2.

Cluster Set-up

In order to achieve comparable results for both contenders, the tests were set up
aiming for a price-equal scenario. The Couchbase Capella configuration was set as a
baseline that was also used in the paper highlighted in Appendix 2. More precisely,
the setup in Table 1 below was chosen.

Table 1. Cluster Configurations

Operational
Cluster

Analytics
Cluster

Add-on
services Hourly Costs

Couchbase
Capella

32 Cores:
4 nodes with
8 cores and
32 GB RAM

32 Cores:
4 nodes with
8 cores and
32 GB RAM

None
$11.80
($7.22 + $4.58)

MongoDB
Atlas

32 Cores:
3 nodes M80
(32 cores and
128 GB RAM)

32 Cores:
1 nodes M80
32 cores and
128 GB RAM

Atlas SQL $11.63

As shown in the right-most column, the hourly costs for both setups were very
similar. Further, even the technical equipment is similar, even if it appears different
on first sight.

•	 Operational – Couchbase’s operational cluster uses an active-active approach with
four nodes of 4 cores and 32 GB of RAM each, leading to a total of 32 cores and
128 GB of RAM. While MongoDB was given this amount of hardware for each of
its three nodes, its primary-secondary architecture disallows that all three nodes
participate equally in transaction processing and mostly leaves the primary with
all the work. From that perspective, MongoDB’s setup has an advantage as they do
not have to coordinate updates amongst multiple nodes.

5

•	 Analytics – The cluster for Couchbase consists of four nodes with 8 cores
and 32 GB RAM each, while MongoDB’s set-up consists of a single M80 node
(32 cores and 128GB). As with the operational cluster configuration, this set-up
leaves both contenders with a similar amount of hardware and MongoDB with
the advantage that it does not have to distribute and coordinate analytical queries
across multiple nodes.

Query Language

Natively, MongoDB comes with its MongoDB query language (formerly known as
MQL) to run operations against the database. For supporting SQL-type of queries, its
Atlas SQL language was used as an add-on service. Atlas SQL is designed to enable
analytical querying of JSON data across Atlas clusters and external data sources. It
is part of the broader Atlas Data Federation service, which allows users to query,
transform, and analyze data in place without needing to move or duplicate it. For this
report it was used to query data from one MongoDB cluster deployed as a three-
node replica set.

Benchmark Configurations

Table 2 summarizes the configurations that were run against both database
systems. B.1 - B.3 serves the purpose of setting a performance baseline, applied
to a single warehouse (around 500MB of raw data) and then varying the number
of transactional and analytical clients. B.1 aims at simply gaining an initial
understanding of the respective single-client performance of the analytic client
portions of the benchmark. B.2 targets gaining an understanding of interference
between the two workload classes, while B.3 tests the scalability of the transactional
workload.

The remaining three configurations make use of 1,000 warehouses (around
500GB of raw data). B.4, B.5, and B.6 correspond to B.1, B.2, and B.3, respectively,
while B.6 significantly increases the number of transactional clients to evaluate the
scalability of the transactional workload.

Table 2. Benchmark Configurations

#warehouses #T_Clients #A_Clients

B.1 1 0 1

B.2 1 1 1

B.3 1 2 1

B.4 1000 0 1

B.5 1000 1 1

B.6 1000 128 1

6

Benchmark Setup

Operational
Cluster

CH2++

CH2++

Analytics
Node

SQL

Capella
Operational

Capella
Analytics

transactional
workload

transactional
workload

analytical
workload

Figure 1: MongoDB Runtime Benchmark Set-up Figure 2: Couchbase Runtime Benchmark Set-up

analytical
workload

oplog

Figure 1 and Figure 2 illustrate the setup of the benchmark and the respective
MongoDB and Couchbase clusters. For MongoDB, the transactional part of the
benchmark connects to the 3-node replica set, issuing requests with the MongoDB
query language. The analytical part of the benchmark makes use of the Atlas SQL
feature targeting the analytics node. Changes made on the operational cluster reach
the Analytics Node via the MongoDB oplog via the same mechanism MongoDB uses
to keep its Secondary nodes updated (technically, the Analytics Node is another
Secondary node).

In the case of Couchbase, the transactional workload targets the Capella Operational
cluster, while the analytical workload targets the Capella Analytics cluster. Capella
takes care of synchronizing the analytics cluster with the operational cluster.

Benchmark Execution

When running the benchmarks, all infrastructure was deployed on AWS. This
infrastructure included the (i) database clusters and (ii) a virtual machine running
the CH2++ workload driver. Note that while both clients and servers use the same
cloud provider and same provider region, VPC peering is not used. The client targets
the database clusters using their respective DNS names, which resolve to publicly
routable IP addresses.

For running the benchmarks, the clusters were first initialized.

For Couchbase

•	 Scopes and collections were created for Capella’s operational data store

•	 Some operational indexes were also added (Appendix 1)

•	 Then indexes were created for Capella Analytics (Appendix 1)

•	 Then the load step was initiated, where CH2++ inserts the initial data set into the
operational cluster

•	 An ANALYZE statement was run for each collection (cf. Appendix)

7

For MongoDB

•	 The load step was initiated, where CH2++ inserts the initial data set into the
operational cluster

•	 Several indexes were set up that help both the transactional and analytics
workloads (cf. Appendix)

Only after that was the actual benchmark started.

Results

This section presents the results of the evaluations performed following the above
methodology. The initial results are for the single warehouse cases (500MB) (B.1 -
B.3) before continuing to 1,000 warehouses (500GB) (B.4 - B.6).

In this result section, the performance of each individual analytical query is not
discussed, but rather considered as the set of all queries combined. The overall
execution time (sum) of all queries is presented, their geometric mean, and the
maximum execution time of any query.

Benchmark with 1 Warehouse

Table 3 shows the results of the runs with 1 warehouse (500MB). For the case
with one analytical client, Couchbase outperforms MongoDB by several orders
of magnitude. The execution of all 22 analytical queries takes 10.75 seconds for
Couchbase, but more than 46 minutes for MongoDB (including the queries that
timed out for MongoDB).

The longest running query required 1.15 seconds for Couchbase; for MongoDB, the
benchmark reported a query time of 300 seconds. This, however, is only the case
as the query timeout was set to 300 seconds (5 minutes), which appeared to be a
generous timespan for the small data set used in this setup. Overall, for MongoDB,
8 out of 22 queries timed out and did not complete in the allocated five minutes. For
Couchbase, all 22 queries executed without timing out.

Table 3. Results for 1 warehouse

1 Analytical Client 1 Transactional Client &
1 Analytical Client

2 Transactional Clients &
1 Analytical Client

Couchbase MongoDB Couchbase MongoDB Couchbase MongoDB

Analytical
Metrics

Sum (sec.) 11.28 2,813 16.64 2,836 18.28 5,093

Max (sec.) 1.21 300 9.34 300 10.74 300

Geometric
mean (sec.) 0.41 40.21 0.26 41.17 0.28 43.38

Timed out 0 8 0 8 0 16

8

As the benchmark is comprised of 22 different analytic queries, the report focuses
on the geometric mean as the key metric. Compared to the arithmetic mean, it is less
affected by extreme values in a skewed distribution. The geometric mean provides
a robust, outlier-resistant summary that’s ideal for relative performance insights,
making it easier to identify better performance across all queries without misleading
averages. The geometric mean is a way to find the “average” of a set of numbers,
but instead of adding them up like the regular (arithmetic) mean, you multiply them
together and then take the nth root, where n is the number of values.

The geometric mean shines in this scenario because latencies are positive,
multiplicative, and often skewed. Why use the geometric mean?

•	 Handles the multiplicative nature of performance

•	 Reduces the impact of outliers and skew

•	 Better for ratios and relative comparisons

•	 Standard in performance benchmarking

The following is a comparison of Couchbase Analytics to MongoDB Atlas for
this metric.

Couchbase vs. MongoDB Execution Times with Faster Ratio

1 Analytical

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Co
uc

hb
as

e
Fa

st
er

 R
at

io
 (x

 ti
m

es
)

Couchbase Couchbase Faster Ratio

.41

40.21 41.17
43.38

.26

-- 160

-- 140

-- 120

-- 100

-- 80

-- 60

-- 40

-- 20

- 0

50 --

40 --

30 --

20 --

10 --

0 -
.28

1 Transactional &
1 Analytical

2 Transactional &
1 Analytical

MongoDB

98x

158x 156x

With the above results and to explore MongoDB’s timeout behavior more, the
timeout was extended to 60 minutes, with defined indexes (Shown in the Appendix 1).
The results:

•	 6 of 22 (27%) queries still timed out, not finishing their queries in 60 minutes

•	 8 of 22 queries had latencies below 10 seconds

•	 5 of 22 were between 24 and 62 seconds

•	 1 of 22 needed around 2 minutes

•	 1 of 22 needed 44 minutes

9

Benchmark with 1,000 Warehouses (500GB)

Considering the poor results obtained for MongoDB with 1 warehouse (500 MB),
it did not make sense to attempt testing workloads against MongoDB at a scale of
1,000 warehouses (500 GB). While there is no comparison to be made, it was still
interesting to test how Capella Analytics would perform and scale.

Table 4. Couchbase Capella Results for 1,000 warehouses

1 Analytical Client
1 Transactional Client &

1 Analytical Client
128 Transactional Client &

1 Analytical Client

Analytical
Metrics

Sum (sec.) 659s 708 730

Max (sec.) 89.4 91.0 95.74

Geometric
mean (sec.) 22.75 24.82 25.63

For these numbers, given a 1000X increase in data volume with no infrastructure
changes, one might expect a 1000X increase in analytic metric times resulting. Below
is a table showing that in fact the geometric mean times increase by less than 100X,
or 1/10th relative to that of the data volume increase.

1 Analytical Client
1 Transactional Client &

1 Analytical Client
128 Transactional Client &

1 Analytical Client

Analytical
Metrics

Geometric
mean (sec.)

500MB
.41 .26 .28

Geometric
mean (sec.)

500GB
22.75 24.82 25.63

Ratio 55.5 95.5 91.6

Conclusion

In terms of document database platforms, despite MongoDB being widely used as
an operational database, this report shows that MongoDB Atlas struggles in the area
of analytic performance. This is true in terms of the latency of queries that were
executed and those that failed to meet the generous timeout limits. Couchbase
Capella had no issues beating the timeout limits, with the longest running query in
the test taking less than 11 seconds for the 500MB dataset. Capella Analytics has
shown itself to be a far better option for companies looking for analytic solutions for
JSON document data. So how might companies currently using MongoDB gain the
analytic performance and workload advantages of Couchbase?

10

In fact, Couchbase makes it easy for companies to bring their MongoDB operational
data into Couchbase Analytics without making any operational data changes. This
can be achieved via Kafka and brings data into Couchbase Analytics with sub-second
latency. This is possible for both cloud and on-prem deployments.

Operational
Cluster

CH2++ CH2++

Kafka &
Kafka Connect Capella

Analytics

transactional
workload

analytical
workload

change stream

In this way, companies can easily adopt Couchbase Analytics for analytics – without
having to change their operational setup – and expect to see query latencies improve
in the magnitude of 100-150X faster queries for similar hardware.

For more information about Couchbase Analytics, go to:
https://www.couchbase.com/products/analytics/

https://www.couchbase.com/products/analytics/

11

APPENDIX 1

Link to Benchmark on GitHub: https://github.com/couchbaselabs/ch2/tree/main

MongoDB Indexes

INDEXES FOR OPERATIONAL WORKLOAD

db.item.createIndex({i_w_id: 1})

db.warehouse.createIndex({w_id: 1, w_tax: 1})

db.district.createIndex({d_w_id: 1, d_id: 1, d_next_o_id: 1, d_tax})

db.customer.createIndex({c_w_id: 1, c_d_id: 1, c_id: 1})

db.customer.createIndex({c_w_id: 1, c_d_id: 1, c_last: 1})

db.stock.createIndex({s_w_id: 1, s_i_id: 1, s_quantity: 1})

db.orders.createIndex({o_w_id: 1, o_d_id: 1, o_id: 1, o_c_id: 1})

db.orders.createIndex(

	 {o_c_id: 1, o_d_id: 1, o_w_id: 1, o_id: 1, o_carrier_id: 1, o_entry_id: 1 })

db.neworder.createIndex({no_w_id: 1, no_d_id: 1, no_o_id: 1})

db.district.createIndex(

	 { “o_orderline.ol_o_id”: 1, “o_orderline.ol_d_id”: 1,

		 o_orderline.ol_w_id”: 1, “o_orderline.ol_number”: 1 })

db.orders.createIndex(

	 { “o_orderline.ol_o_id”: 1, “o_orderline.ol_d_id”: 1,

		 “o_orderline.ol_w_id”: 1, “o_orderline.ol_i_id”: 1 })

INDEXES FOR ANALYTICAL WORKLOAD

db.orders.createIndex({ o_entry_d: 1 });

db.orders.createIndex({ “o_orderline.ol_delivery_d” : 1 });

db.orders.createIndex({ “o_orderline.ol_i_id”: 1 });

db.orders.createIndex({ “o_orderline.ol_i_id”: 1, “o_orderline.ol_quantity”: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_i_id”: 1, “o_orderline.ol_delivery_d”: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_i_id”: 1, “o_orderline.ol_supply_w_id”: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_i_id”: 1, o_w_id:1, “o_orderline.ol_quantity”: 1 });

db.orders.createIndex({ “o_orderline.ol_delivery_d”: 1, o_entry_d: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_delivery_d”: 1, “o_orderline.ol_amount”: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_delivery_d”: 1, o_entry_d: 1,

		 “o_orderline.ol_i_id”: 1, 	o_w_id: 1 });

db.orders.createIndex({ o_c_id: 1, o_w_id: 1, o_d_id: 1 });

db.orders.createIndex(

	 { o_c_id: 1, o_w_id: 1, o_d_id: 1, o_entry_d: 1, o_id: 1 });

db.orders.createIndex(

	 { o_c_id: 1, o_w_id: 1, o_d_id: 1, o_entry_d: 1, “o_orderline.ol_i_id”: 1 });

https://github.com/couchbaselabs/ch2/tree/main

12

db.orders.createIndex({ o_c_id: 1, o_w_id: 1, o_d_id: 1, o_entry_d: 1 });

db.orders.createIndex({ o_c_id: 1, o_w_id: 1, o_d_id: 1, o_carrier_id: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_supply_w_id”: 1, “o_orderline.ol_i_id”: 1,

		 “o_orderline.ol_delivery_d”: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_supply_w_id”: 1, “o_orderline.ol_i_id”: 1,

		 “o_orderline.ol_delivery_d”: 1, o_c_id: 1, o_w_id: 1, o_d_id: 1 });

db.orders.createIndex(

	 { “o_orderline.ol_supply_w_id”: 1, “o_orderline.ol_i_id”: 1, o_c_id: 1,

		 o_w_id: 1, o_d_id: 1, o_entry_d: 1 });

db.item.createIndex({ i_id: 1 });

db.item.createIndex({ i_data: 1 });

db.item.createIndex({ i_id: 1, i_data: 1 });

db.item.createIndex({ i_id: 1, i_price: 1, i_data: 1 });

db.stock.createIndex({ s_w_id: 1, s_i_id: 1 });

db.stock.createIndex({ s_w_id: 1, s_i_id: 1, s_quantity: 1 });

db.nation.createIndex({ n_nationkey: 1 });

db.nation.createIndex({ n_nationkey: 1, n_name: 1 });

db.nation.createIndex({ n_nationkey: 1, n_regionkey: 1 });

db.supplier.createIndex({ su_nationkey: 1 });

db.supplier.createIndex({ su_comment: 1 });

db.supplier.createIndex({ su_suppkey: 1 });

db.supplier.createIndex({ su_suppkey: 1, su_nationkey: 1 });

db.region.createIndex({ r_regionkey: 1, r_name: 1 });

db.neworder.createIndex({ no_w_id: 1, no_d_id: 1, no_o_id: 1 });

db.customer.createIndex({ c_id: 1, c_d_id: 1, c_w_id: 1 });

db.customer.createIndex(

	 { c_id: 1, c_d_id: 1, c_w_id: 1, “c_addresses.c_address_kind”: 1,

		 “c_addresses.c_state”: 1 });

db.customer.createIndex(

	 { c_balance: 1, “c_phones.c_phone_number”: 1, “c_phones.c_phone_kind”: 1 });

Couchbase Initialization

CREATE SCOPE AND COLLECTIONS

CREATE SCOPE bench.ch2pp;

CREATE COLLECTION bench.ch2pp.item;

CREATE COLLECTION bench.ch2pp.warehouse;

CREATE COLLECTION bench.ch2pp.district;

CREATE COLLECTION bench.ch2pp.customer;

CREATE COLLECTION bench.ch2pp.stock;

CREATE COLLECTION bench.ch2pp.orders;

CREATE COLLECTION bench.ch2pp.neworder;

CREATE COLLECTION bench.ch2pp.history;

CREATE COLLECTION bench.ch2pp.supplier;

CREATE COLLECTION bench.ch2pp.nation;

CREATE COLLECTION bench.ch2pp.region;

13

PRIMARY INDEX FOR CAPELLA OPERATIONAL CLUSTER

CREATE PRIMARY INDEX ON bench.ch2pp.warehouse

SECONDARY INDEXES FOR COUCHBASE OPERATIONAL

CREATE INDEX cu_w_id_d_id_last

 ON bench.ch2pp.customer(c_w_id, c_d_id, c_last) USING GSI;

CREATE INDEX di_id_w_id ON bench.ch2pp.district(d_id, d_w_id) USING GSI;

CREATE INDEX no_o_id_d_id_w_id

 ON bench.ch2pp.neworder(no_o_id, no_d_id, no_w_id) USING GSI;

CREATE INDEX or_id_d_id_w_id_c_id

 ON bench.ch2pp.orders(o_id, o_d_id, o_w_id, o_c_id) USING GSI;

CREATE INDEX or_w_id_d_id_c_id

 ON bench.ch2pp.orders(o_w_id, o_d_id, o_c_id) USING GSI;

CREATE INDEX wh_id ON bench.ch2pp.warehouse(w_id) USING GSI;

SECONDARY INDEXES FOR CAPELLA ANALYTICS CLUSTER

CREATE INDEX customer_c_balance ON customer(c_balance:DOUBLE);

CREATE INDEX orders_entry_d ON orders(o_entry_d:STRING);

CREATE INDEX orderline_i_id

 ON orders(UNNEST o_orderline SELECT ol_i_id:BIGINT)

 EXCLUDE UNKNOWN KEY;

CREATE INDEX orderline_delivery_d

 ON orders(UNNEST o_orderline SELECT ol_delivery_d:STRING)

 EXCLUDE UNKNOWN KEY;

ANALYZE STATEMENTS FOR CAPELLA ANALYTICS CLUSTER

ANALYZE ANALYTICS COLLECTION `customer` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `district` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `history` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `item` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `nation` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `neworder` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `orders` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `region` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `stock` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `supplier` WITH { “sample”: “high” };

ANALYZE ANALYTICS COLLECTION `warehouse` WITH { “sample”: “high” };

14

APPENDIX 2 – BENCHMARK DETAILS

CH2++ benchmark: A modern benchmarking workload designed to evaluate the performance of hybrid operational and
analytical processing (HTAP/HOAP) on document-oriented databases that natively store and query JSON data.

M. Carey, V. Sarawathy, D. Nagy B.-C. Wang, K. Murthy, M. Muralikrishna, P. Gupta, and T. Westmann, “CH2++: New HOAP
for Benchmarking JSON Data Analytics”, 17th TPC Technology Conf. on Performance Evaluation & Benchmarking (TPC TC),
London, England, September 2025.

CH-benCHmark

Modern customer experiences need a flexible database platform that can power applications spanning from cloud to edge and
everything in between. Couchbase’s mission is to simplify how developers and architects develop, deploy and run modern applications
wherever they are. We have reimagined the database with our fast, flexible and affordable cloud database platform Capella,
allowing organizations to quickly build applications that deliver premium experiences to their customers – all with best-in-class price
performance. More than 30% of the Fortune 100 trust Couchbase to power their modern applications. For more information, visit
www.couchbase.com and follow us on X (formerly Twitter) @couchbase.

© 2025 Couchbase. All rights reserved.

https://github.com/couchbaselabs/ch2
https://db.in.tum.de/research/projects/CHbenCHmark/?lang=en
https://www.couchbase.com
https://www.couchbase.com

